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FOREWORD

The capacitor gauge technique has been used to measure the shock wave compression of

tantalum. This work was supported by the Army Engineer Waterways Experiment Station under
MIPR No. A35200-9-0004.
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1. INTRODUCTION

The capacitor gauge technique!

has been used to measure the free-surface velocity
of a shock-loaded tantalum disk. Stress reverberations were produced in the specimen disk
by impacting it with an alpha titanium disk of similar thickness. The first few stress
reverberations in the tantalum specimen were monitored with the free-surface-velocity
measurement. This type of measurement is useful for observing the effects of spall
fracture in a shock-loaded disk.2 Spall fracture can occur in a material if the tensile pulse
produced from the interaction of rarefaction waves exceeds a threshold stress value. If the

specimen fractures, the resulting spall signal influences the free-surface velocity.

A 40-mm-bore gas gun was used for shock-loading the tantalum disk.> Figure 1 is a
schematic of the muzzle region of the gas gun showing a target assembly with a capacitor
gauge. The time of impact is measured with four charged tilt pins which are placed
around the specimen. The average projectile velocity at impact is measured with the three
charged pins in the side of the barrel and the tilt pins. The free surface of the specimen
forms one plate of a parallel plate capacitor. The capacitor gauge is spaced a preselected
distance behind the specimen and measures the shock-induced motion of the free surface
of the specimen. The shock transit time is determined by measuring the time difference

between the tilt output signal and the capacitor gauge signal.

The tantalum (commercially pure grade, 99 + % purity) and alpha titanium (com-
mercially pure grade 55, 99 + % purity) materials were purchased from Astro Metallurgical
Corporation, Houston, Texas. The tantalum material was obtained in the form of 3.18-
and 4.57-mm-thick plates. The alpha titanium material was obtained in the form of a
4,76-mm-thick plate. Average hardness values for machined and lapped tantalum and
titanium disks are R, 52 and R, 57, respectively.*

The experimental techniques are presented in Section II. Section III contains the

results and discussion. Section 1V contains the summary.
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Figure 1.  Schematic of muzzie region of gas gun showing a
target assembly with a capacitor gauge.

II. EXPERIMENTAL TECHNIQUES

The procedure that was used to fabricate the capacitor gauge for this experiment has been
previously documented! and will not be presented here. The center conductor (Figure A-7,
Reference 1) for this gauge had a diameter of 6.35 mm. The gauge was calibrated after it was
assembled but prior to inserting the electrical components. The purpose of the calibration is to
measure the capacitance between the center conductor and a simulated specimen face as the
spacing between the specimen and center conductor is varied. A capacitance bridge system was
used for the measurements (Figure 3, Reference 1). A 0.259-mm-thick spacer was used with the

gauge. (This is the distance that the capacitor gauge center conductor is spaced behind the speci-
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men free surface.) Beginning with the specimen spacing slightly larger than the spacer thickness,
the gauge capacitance was measured as the spacing was decreased. Table 1 gives the results of the
measurements. The measurements were made at a frequency of 1 kHz and had a resolution of

0.001 pF. The calibration device micrometer had a resolution of 0.002 mm.

Figure 2 is a plot of the measured gauge capacitance values versus inverse specimen spacing.
The curve shown is a third-order fit to the data points using the method of least squares. The data
points were also fitted with fourth-order and fifth-order curves using the method of least squares.
These curves could not be distinguished from the curve in Figure 2. A second-order curve was
also fitted to the data points. This curve did not fit the data points as well as the higher-order

curve fits.

Table 1. Measurement of gauge capacitance versus
specimen spacing.

Gauge Specimen Gauge Specimen
Capacitance Spacing  Capacitance Spacing
(pF) (mm) (pF) (mm)
6.163 0.269 8.371 0.114
6.212 0.259 8.534 0.109
6.274 0.249 8.810 0.104
6.336 0.239 9.035 0.099
6.405 0.229 9.387 0.094
6.482 0.219 9.711 0.089
6.565 0.209 10.211 0.084
6.672 0.199 10.553 0.079
6.761 0.189 11.287 0.074
6.883 0.179 11.951 0.069
7.018 0.169 13.044 0.064
7.178 0.159 14.128 0.059
7.362 0.149 15.936 0.054
7.579 0.139 16.805 0.052
7.827 0.129 17.203 0.051
8.145 0.119
3




SPACING (mm)

030 020 015 012 0100.09 0.08 0.07 0.06 0.05
20 T T T | — T T T
18- + MEASUREMENT _4
— CURVE FIT

16 |- -1
5
w14 _
=
=
(=} - —
E 12
[
=
< 8l \ -

04045 0.0074 0.0010
C-4695 + -
Al 695 X X T i
4 ] ) 1 | | ] |

1
3 5 7 9 1 13 15 17 19 2
INVERSE SPACING (mm-!)

Figure 2. Capacitor gauge calibration curve. The paoints represent
the measurements from Table 1. The calibration curve is
a third-order best-fit curve; C is the gauge capacitance
and x is the spacing.

After the capacitance calibration measurements were obtained, the gauge was completed by
adding a 0.01-uF coupling capacitor and a 1.5-M§2 isolation resistor to the circuit. Figure 3 shows
the electrical schematic of the capacitor gauge and the voltage-limiter circuits. For this experiment
the power supply voltage was set to +500 V. At projectile impact, movement of the specimen
disk toward the right increases the gauge capacitance. Charge flows onto the gauge to maintain

the initial voltage. The flowing charge produces a negative voltage across the 50-{) termination
resistance which is recorded on the oscilloscope. The voltage-limiter circuit protects the

oscilloscope from voltage overload as the measured voltage increases.




A target assembly containing the capacitor gauge, tantalum specimen, and tilt pins was
prepared using standard target preparation techm‘ques."3 Figure 4(a) shows the completed pro-
jectile and target assembly. The planarity of the specimen impact face was 0.3 mrad with respect
to the face of the stainless steel target cup. The tilt pin ends were positioned 4 um above the
specimen impact face. The perpendicularity of the alpha titanium impactor face to the cylindrical
surface of the completed projectile was 3 um. Figure 4(b) shows the recovered projectile and
target assembly pieces after impact.

TARGET ASSEMBLY
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Figure 3. Schematic of capacitor gauge and voltage limiter circuits. For clarity
of presentation, the tilt pins are not shown in the target assembly.

HI. RESULTS AND DISCUSSION

Figure 5 shows the tilt output and capacitor gauge oscilloscope records resulting from
impacting the alpha titanium disk onto the tantalum specimen at 0.111 km/s. The impactor tilt for
this shot was 0.35 mrad. The voltage-time pulse in Figure 5(b) was converted to a free-suriace

velocity versus time profile using the equation that describes the circuit in Figure 3 and the

capacitor gauge calibration curve.




(a)

(b)
Figure 4. Projectile and target assembly with capacitor gauge (a)
before impact and (b) after impact.
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Figure 5. Oscilloscope data from target assembly with a capacitor gauge. Time increases from
left to right. (a) Tilt pin data record. The vertical scale is 4 V/div. The middle trace is
an initial time reference square pulse for wave velocity measurements. A 0.05-us-period
time calibration wave is shown at the bottom. (b) Capacitor gauge data record. The
vertical scale is 5 mV/div. The capacitor gauge baseline signal is shown at the top. The
capacitor gauge signal (recorded in the oscilloscope reverse polarity mode} is displaced
below the baseline due to a leakage current in the 0.01-uF coupling capacitor. A
1.07-us delayed time reference square pulse used for the wave velocity measurements
passes through the capacitor gauge signal. A 0.10-us-period time calibration wave is
shown at the bottom.
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Following Rice,’ the equation describing the circuit can be approximated with

V(1) = - RE, ‘-:E )
where R is the 50-§2 termination resistance, V(t) is the measured voltage across R, Eo is the dc
capacitor gauge voltage, and C is the measured gauge capacitance. For this experiment, because
of a leakage current in the 0.01-uF coupling capacitor, a voltage less than the +500 V dc supply
voltage was applied to the capacitor gauge. A leakage current value of 183 uA was obtained using
the measured +9.2 mV offset voltage in Figure 5(b). (The capacitor gauge signal was recorded in
the oscilloscope reverse polarity mode.) The capacitor gauge voltage is given by

E, =500V -(183)(1.5) V = +225 V.

The capacitor gauge calibration curve from Figure 2 is

0.4045 0.007¢ 0.0010
- Te YT o )

C(x) = 4.695 + "

where C(x) is in picofarads and x is in millimeters. The specimen free-surface velocity can be

d dC dC
Ufs(t) =- ‘(f = - (:17)/(—5;() . Q3)

dcC
Substituting E; from Equation (1) into Equation (3) gives

obtained from the equation,

0.08889 V(1)
2(_3
dx

U, (1) = , )

dC e .
where V(t) is in millivolts, ax is in picofarads per millimeter, and U, is in millimeters per micro-

second or kilometers per second. d—x is obtained from Equation (2);

dC 0.4045 0.0148 0.0030
€@ . R 5)

dx x? X
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To find the free-surface velocity Ufs from Equations (4) and (5), it is first necessary to find

the free-surface position x. Integrating Equation (1) gives

t
1
€ = G - ‘! vdt, ©)
where x, is the initial specimen spacing and C = C(x0 ). Substituting C(x) from Equation (2)
and the parameters x, = 0.259 mm, C0 = 6.204 pF, R = 500 @, and E;, = 225 V into
Equation (6) gives

t
0.0010  0.0074 = 0.4045
-~ + —— = 1.509 - 0.08889 f v, 7
¢

X

where x is the free-surface position in millimeters and j(; ! Vdt is the area under the voltage-time
pulse in millivolt-microseconds. This cubic equation is solved for each voltage-time integtal value

to find x as a function of time.

To obtain x and U ;> an enlarged photograph was made of the capacitor gauge oscilloscope
trace shown in Figure 5(b). The voltage-time pulse was digitized from this photograph. The area
under the voltage-time pulse was obtained for selected times by cutting the photograph into pieces
and weighing each piece. A standard-grid piece was weighed for calibration. This information was
used with Equations (4), (5), and (7) to obtain x and U“. Table 2 gives the results of the

computation. The estimated uncertainity in the values is a few percent.

The x values in Table 2 decrease from 0.259 to 0.157 mm. This range corresponds to the
initial portion of the calibration curve in Figure 2 which can be approximated with a straight line.
A straight-line least-squares fit of the initial 15 data points in Table 1 gives C(x) = 4.615 +
0.4099/x for the capacitor gauge calibration curve for this region. When this calibration curve was
used in the computation, the x and U, values differed from those in Table 2 by only a few

percent,

Figure 6 is a plot of the digitized free-surface-velocity data of Table 2. This profile shows
stress reverberations in the tantalum specimen. The initial compressive wave consists of an elastic
wave of amplitude 0.061 km/s followed by a plastic wave of slightly larger amplitude. The initial

compressive wave is followed by a tensile wave and then a second compressive wave with an
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Table 2. Digitized capacitor gauge voltage data and the corresponding
free-surface-position and free-surface-velocity results for tantalum.

Capacitance
Voltage-Time Position-
Integral® Free-Surface Derivative® Free-Surface
Time® Voltage* [ Vdt Position® dc Velocity*
¢ dx
t v 3 Uy,

(us) (mV) (mV us) (mm) (pF/mm) (km/s)

0.00 0.00 0.00 0.259 -5.84 0.0000

0.07 —4.04 -0.14 0.257 -5.95 0.0604

i 0.13 -4.23 -0.37 0.254 —6.11 0.0615
g 0.17 —4.33 -0.60 0.250 -6.29 0.0612
: 0.27 -4.23 -1.02 0.244 =6.60 0.0570
0.32 -4.34 -1.22 0.242 -6.75 0.0572

0.37 -4.46 -1.42 0.239 -6.91 0.0574

0.47 —4.72 -1.90 0.233 -1.29 0.0575

2 0.57 =5.12 =2.38 0.227 =7.69 0.0592
! 0.62 -5.65 -2.93 0.221 -8.15 0.0617
g 0.76 -6.16 ~3.52 0.21§ -8.67 0.0631
B 0.83 -6.25 -3.86 0.212 -8.97 0.0619
: 0.87 =-5.10 —4.12 0.209 -9.2i 0.0492
0.92 =2.77 —4.32 0.207 -9.39 0.0262

3 0.98 -1.44 —4.40 0.206 -9.47 0.0135
L. 1.03 -0.77 —4.45 0.206 -9.51 0.0072
3 1.07 —0.63 —~4.48 0.206 ~9.54 0.0059
F: 1.27 -0.38 -4.57 0.205 -9.63 0.0035
. 1.47 -0.35 —4.65 0.204 -9.70 0.0032
1.67 -0.35 —4.73 0.203 -9.78 0.0032

1.77 —0.35 -4.77 0.203 -9.82 0.0032

1.83 -1.19 ~4.82 0.203 -9.86 0.0107

1.88 -3.10 -4.91 0.202 -9.95 0.0277

1.92 -4.44 -5.10 0.200 -10.1 0.0389

1.97 -5.15 -5.34 0.198 ~-10.4 0.0441

2.07 -5.77 -5.88 0.193 -10.9 0.0470

2.17 -6.31 -6.50 0.189 -11.5 0.0486

2.28 -6.92 -7.18 0.183 -12.3 0.0501

2.37 =7.58 -7.93 0.178 -13.1 0.0514

248 -8.27 -8.75 0.173 -14.0 0.0524

2.55 ~8.65 -9.33 0.169 -14.7 0.0522

2.61 -8.90 -9.90 0.166 -15.4 0.0513

2.66 -8.08 -10.31 0.164 -15.9 0.0451

2.72 =5.19 -10.69 0.161 -16.4 0.0281

2.78 -3.15 -10.92 0.160 ~16.7 0.0168

2.84 =212 -11.09 0.159 -16.9 0.0111

291 -1.50 =11.21 0.159 -17.1 0.0079

298 -1.25 ~11.30 0.158 -17.2 0.0065

3.05 -1.10 -11.38 0.158 -17.3 0.0056

3.12 =1.12 -11.46 0.157 -17.4 0.0057

3These values were obtained from the capacitor gauge voltage record shown in Figure §,
bObtained by solving the cubic Equation (7) for each voltage-time integral value.
<QObtained from Equation (5) for each free-surface-position value.

d0btained from Equation (4).
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amplitude of approximately 0.05 km/s. The time duration of each of the waves is approximately
0.9 us. The flat, low-amplitude tensile region (no signal reversal) suggests that no spall fracture
occurred during the tensile portion of the wave. Taylor reported a pullback velocity (decrease
in the free-surface velocity at first wave reversal) for spall fracture of 0.12 km/s for a 1.5-us-wide
compressive pulse in tantalum.® Isbell et al. obtained a pullback velocity for spall of 0.19 km/s
for a 0.8- us-wide compressive pulse in tantalum.” These reported values are larger than the 0.06-

km/s pullback velocity for the 0.9-us-wide compressive pulse in Figure 6.
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Figure6. Free-surface-velocity profile for the 3.73-mm-thick tantalum
specimen impacted at 0.111 km/s with a 2.65-mm-thick
alpha titanium impactor.

Table 3 summarizes the shock wave results for tantalum. The measured 4.15-km/s elastic
wave velocity is the same as the ultrasonic longitudinal wave velocity reported by Isbell et al.” The
elastic wave particle velocity value of 0.031 km/s is in good agreement with the 0.029-km/s value
reported by Isbell et al.” The 2.1-GPa Hugoniot elastic limit value is slightly larger than the
1.8-GPa value for a propagation distance of 3.8 mm reported by Isbell et al.” Using the reported
stress - particle-velocity relationships for alpha titanium® (o, = 0.25 + 22.5 u, +4.99 ug,

11
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Oy < 9 GPa, u, in km/s) and tantalum’ (oy = 0.4 +55.0 u, + 21.5 uz, oy < 20 GPa. u, in
km/s) gives an initial stress and particle velocity of 2.1 GPa and 0.031 km/s, respectively. for alpha
titanium impacting tantalum at 0.111 km/s. These values are in good agreement with the measured
2.2-GPa stress and 0.032-km/s particle velocity for the plastic wave in Table 3. The measured
3.19-km/s shock wave velocity in Table 3 is slightly less than a calculated value of 3.40 km/s

obtained from the tantalum shock-velocity - particle-velocity relationship’ U, =336+124 u,-

After shock loading, the recovered tantalum specimen was sectioned on a diameter and
polished. Figure 7 is a photograph of this surface. No fracture damage was revealed by microscopic
observation. An initial tensile pulse amplitude of about 2 GPa is estimated for this specimen based
on the shock compression results of Table 3. This value is less than the 4.4- and 6.8-GPa spall
strength values that have been reported for tantalum.?’

Figure 7. Photograph of the recovered, sectioned, and polished shock-loaded
tantalum specimen. The bottom edge of the disk is the impact surface.

IvVv. SUMMARY

The free-surface velocity of a shock-loaded tantalum disk has been measured. Stress re-
verberations were produced in the disk by impacting it with an alpha titanium disk at a velocity
of 0.111 km/s. The tensile pulse amplitude and duration were less than that required for spall
fracture in the tantalum disk. The shock wave measurements agree with the results of previous

work.
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